Temporal
- class audioflux.Temporal(frame_length=2048, slide_length=512, window_type=WindowType.HANN)
Temporal feature
- Parameters
- frame_length: int
frame length
- slide_length: int
sliding length
- window_type: WindowType
Window type for each frame.
See:
type.WindowType
Examples
Read 220Hz audio data
>>> import audioflux as af >>> audio_path = af.utils.sample_path('220') >>> audio_arr, sr = af.read(audio_path)
Create Temporal and extract feature
>>> temp_obj = af.Temporal(frame_length=2048, slide_length=512) >>> temp_obj.temporal(audio_arr) >>> energy_arr, rms_arr, zero_cross_arr, m_arr = temp_obj.get_data(len(audio_arr))
Methods
cal_time_length
(data_length)Calculate the length of a frame from audio data.
ezr
(data_length, gamma)Get ezr feature
get_data
(data_length)Get energy/rms/zeroCrossRate feature
temporal
(data_arr)set audio data
- cal_time_length(data_length)
Calculate the length of a frame from audio data.
- Parameters
- data_length: int
The length of the data to be calculated.
- Returns
- out: int
- temporal(data_arr)
set audio data
- Parameters
- data_arr: np.ndarray [shape=(n,)]
Input audio data
- get_data(data_length) -> (<class 'numpy.ndarray'>, <class 'numpy.ndarray'>, <class 'numpy.ndarray'>)
Get energy/rms/zeroCrossRate feature
- Parameters
- data_length: int
The length of the data passed in by the temporal method
- Returns
- energy_arr: np.ndarray [shape=(time,)]
energy feature
- rms_arr: np.ndarray [shape=(time,)]
rms feature
- zero_cross_arr: np.ndarray [shape=(time,)]
zero Cross Rate feature
- m_arr: np.ndarray [shape=(…,time)]
- ezr(data_length, gamma)
Get ezr feature
- Parameters
- data_length: int
The length of the data passed in by the temporal method
- gamma: float
gamma value
- Returns
- out: np.ndarray [shape=(time,)]
ezr feature